Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
1.
Blood Adv ; 8(3): 653-666, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38113468

ABSTRACT

ABSTRACT: Lymphodepletion (LD) is an integral component of chimeric antigen receptor T-cell (CART) immunotherapies. In this study, we compared the safety and efficacy of bendamustine (Benda) to standard fludarabine/cyclophosphamide (Flu/Cy) LD before CD19-directed, CD28-costimulated CART axicabtagene ciloleucel (axi-cel) for patients with large B-cell lymphoma (LBCL) and follicular lymphoma (FL). We analyzed 59 patients diagnosed with LBCL (n = 48) and FL (n = 11) consecutively treated with axi-cel at the University of Pennsylvania. We also analyzed serum samples for cytokine levels and metabolomic changes before and after LD. Flu/Cy and Benda demonstrated similar efficacy, with complete remission rates of 51.4% and 50.0% (P = .981), respectively, and similar progression-free and overall survivals. Any-grade cytokine-release syndrome occurred in 91.9% of patients receiving Flu/Cy vs 72.7% of patients receiving Benda (P = .048); any-grade neurotoxicity after Flu/Cy occurred in 45.9% of patients and after Benda in 18.2% of patients (P = .031). In addition, Flu/Cy was associated with a higher incidence of grade ≥3 neutropenia (100% vs 54.5%; P < .001), infections (78.4% vs 27.3%; P < .001), and neutropenic fever (78.4% vs 13.6%; P < .001). These results were confirmed both in patients with LBCL and those with FL. Mechanistically, patients with Flu/Cy had a greater increase in inflammatory cytokines associated with neurotoxicity and reduced levels of metabolites critical for redox balance and biosynthesis. This study suggests that Benda LD may be a safe alternative to Flu/Cy for CD28-based CART CD19-directed immunotherapy with similar efficacy and reduced toxicities. Benda is associated with reduced levels of inflammatory cytokines and increased anabolic metabolites.


Subject(s)
Biological Products , Cytokines , Lymphoma, Follicular , Humans , Bendamustine Hydrochloride/adverse effects , CD28 Antigens , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Cyclophosphamide
2.
Cell Rep Med ; 4(12): 101336, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38118406

ABSTRACT

Pre-existing anti-human leukocyte antigen (HLA) allo-antibodies constitute a major barrier to transplantation. Current desensitization approaches fail due to ineffective depletion of allo-specific memory B cells (Bmems) and long-lived plasma cells (LLPCs). We evaluate the efficacy of chimeric antigen receptor (CAR) T cells targeting CD19 and B cell maturation antigen (BCMA) to eliminate allo-antibodies in a skin pre-sensitized murine model of islet allo-transplantation. We find that treatment of allo-sensitized hosts with CAR T cells targeting Bmems and LLPCs eliminates donor-specific allo-antibodies (DSAs) and mitigates hyperacute rejection of subsequent islet allografts. We then assess the clinical efficacy of the CAR T therapy for desensitization in patients with multiple myeloma (MM) with pre-existing HLA allo-antibodies who were treated with the combination of CART-BCMA and CART-19 (ClinicalTrials.gov: NCT03549442) and observe clinically meaningful allo-antibody reduction. These findings provide logical rationale for clinical evaluation of CAR T-based immunotherapy in highly sensitized candidates to promote successful transplantation.


Subject(s)
Receptors, Chimeric Antigen , Humans , Animals , Mice , Plasma Cells , B-Cell Maturation Antigen , T-Lymphocytes , Immunotherapy , Antibodies
3.
Biochem Biophys Res Commun ; 680: 51-60, 2023 11 05.
Article in English | MEDLINE | ID: mdl-37717341

ABSTRACT

Adoptive immunotherapy using chimeric antigen receptor (CAR) T cells has made significant success in treating hematological malignancies, paving the way for solid tumors like prostate cancer. However, progress is impeded by a paucity of suitable target antigens. A novel carbohydrate antigen, F77, is expressed on both androgen-dependent and androgen-independent prostate cancer cells, making it a potential immunotherapy target. This study entails the generation and evaluation of a second-generation CAR against a carbohydrate antigen on malignant prostate cancer cells. Using a single chain fragment variable (scFv) from an F77-specific mouse monoclonal antibody, we created second-generation CARs with CD28 and CD137 (4-1BB) costimulatory signals. F77 expressing lentiviral CAR T cells produce cytokines and kill tumor cells in a F77 expression-dependent manner. These F77-specific CAR T cells eradicate prostate tumors in a human xenograft model employing PC3 cells. These findings validate F77 as a promising immunotherapeutic target for prostate cancer and other malignancies with this aberrant carbohydrate structure.


Subject(s)
Androgens , Prostatic Neoplasms , Male , Animals , Mice , Humans , Cell Line, Tumor , Prostatic Neoplasms/pathology , Immunotherapy, Adoptive , Carbohydrates , Cell- and Tissue-Based Therapy , Receptors, Antigen, T-Cell/genetics , Xenograft Model Antitumor Assays
4.
J Addict Med ; 17(4): 447-453, 2023.
Article in English | MEDLINE | ID: mdl-37579106

ABSTRACT

BACKGROUND AND AIMS: Fentanyl is involved in most US drug overdose deaths and its use can complicate opioid withdrawal management. Clinical applications of quantitative urine fentanyl testing have not been demonstrated previously. The aim of this study was to determine whether urine fentanyl concentration is associated with severity of opioid withdrawal. DESIGN: This is a retrospective cross-sectional study. SETTING: This study was conducted in 3 emergency departments in an urban, academic health system from January 1, 2020, to December 31, 2021. PARTICIPANTS: This study included patients with opioid use disorder, detectable urine fentanyl or norfentanyl, and Clinical Opiate Withdrawal Scale (COWS) recorded within 6 hours of urine drug testing. MEASUREMENTS: The primary exposure was urine fentanyl concentration stratified as high (>400 ng/mL), medium (40-399 ng/mL), or low (<40 ng/mL). The primary outcome was opioid withdrawal severity measured with COWS within 6 hours before or after urine specimen collection. We used a generalized linear model with γ distribution and log-link function to estimate the adjusted association between COWS and the exposures. FINDINGS: For the 1127 patients in our sample, the mean age (SD) was 40.0 (10.7), 384 (34.1%) identified as female, 332 (29.5%) reported their race/ethnicity as non-Hispanic Black, and 658 (58.4%) reported their race/ethnicity as non-Hispanic White. For patients with high urine fentanyl concentrations, the adjusted mean COWS (95% confidence interval) was 4.4 (3.9-4.8) compared with 5.5 (5.1-6.0) among those with medium and 7.7 (6.8-8.7) among those with low fentanyl concentrations. CONCLUSIONS: Lower urine fentanyl concentration was associated with more severe opioid withdrawal, suggesting potential clinical applications for quantitative urine measurements in evolving approaches to fentanyl withdrawal management.


Subject(s)
Analgesics, Opioid , Drug Overdose , Humans , Female , Analgesics, Opioid/adverse effects , Analgesics, Opioid/urine , Retrospective Studies , Cross-Sectional Studies , Fentanyl/adverse effects , Narcotics , Emergency Service, Hospital
5.
Blood Adv ; 7(16): 4418-4430, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37171449

ABSTRACT

Many hematologic malignancies are not curable with chemotherapy and require novel therapeutic approaches. Chimeric antigen receptor (CAR) T-cell therapy is 1 such approach that involves the transfer of T cells engineered to express CARs for a specific cell-surface antigen. CD38 is a validated tumor antigen in multiple myeloma (MM) and T-cell acute lymphoblastic leukemia (T-ALL) and is also overexpressed in acute myeloid leukemia (AML). Here, we developed human CD38-redirected T cells (CART-38) as a unified approach to treat 3 different hematologic malignancies that occur across the pediatric-to-adult age spectrum. Importantly, CD38 expression on activated T cells did not impair CART-38 cells expansion or in vitro function. In xenografted mice, CART-38 mediated the rejection of AML, T-ALL, and MM cell lines and primary samples and prolonged survival. In a xenograft model of normal human hematopoiesis, CART-38 resulted in the expected reduction of hematopoietic progenitors, which warrants caution and careful monitoring of this potential toxicity when translating this new immunotherapy into the clinic. Deploying CART-38 against multiple CD38-expressing malignancies is significant because it expands the potential for this novel therapy to affect diverse patient populations.


Subject(s)
Hematologic Neoplasms , Leukemia, Myeloid, Acute , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Receptors, Chimeric Antigen , Adult , Animals , Child , Humans , Mice , Hematologic Neoplasms/therapy , Hematologic Neoplasms/metabolism , Leukemia, Myeloid, Acute/pathology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes
6.
Nat Biotechnol ; 41(9): 1229-1238, 2023 09.
Article in English | MEDLINE | ID: mdl-36658341

ABSTRACT

Muscle-specific tyrosine kinase myasthenia gravis (MuSK MG) is an autoimmune disease that causes life-threatening muscle weakness due to anti-MuSK autoantibodies that disrupt neuromuscular junction signaling. To avoid chronic immunosuppression from current therapies, we engineered T cells to express a MuSK chimeric autoantibody receptor with CD137-CD3ζ signaling domains (MuSK-CAART) for precision targeting of B cells expressing anti-MuSK autoantibodies. MuSK-CAART demonstrated similar efficacy as anti-CD19 chimeric antigen receptor T cells for depletion of anti-MuSK B cells and retained cytolytic activity in the presence of soluble anti-MuSK antibodies. In an experimental autoimmune MG mouse model, MuSK-CAART reduced anti-MuSK IgG without decreasing B cells or total IgG levels, reflecting MuSK-specific B cell depletion. Specific off-target interactions of MuSK-CAART were not identified in vivo, in primary human cell screens or by high-throughput human membrane proteome array. These data contributed to an investigational new drug application and phase 1 clinical study design for MuSK-CAART for the treatment of MuSK autoantibody-positive MG.


Subject(s)
Myasthenia Gravis, Autoimmune, Experimental , Receptors, Cholinergic , Humans , Mice , Animals , Receptors, Cholinergic/therapeutic use , Autoantigens/therapeutic use , Myasthenia Gravis, Autoimmune, Experimental/drug therapy , T-Lymphocytes , Autoantibodies/therapeutic use , Immunoglobulin G , Protein-Tyrosine Kinases/therapeutic use , Muscles
7.
Blood Cancer Discov ; 4(2): 118-133, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36413381

ABSTRACT

We conducted a phase I clinical trial of anti-BCMA chimeric antigen receptor T cells (CART-BCMA) with or without anti-CD19 CAR T cells (huCART19) in multiple myeloma (MM) patients responding to third- or later-line therapy (phase A, N = 10) or high-risk patients responding to first-line therapy (phase B, N = 20), followed by early lenalidomide or pomalidomide maintenance. We observed no high-grade cytokine release syndrome (CRS) and only one instance of low-grade neurologic toxicity. Among 15 subjects with measurable disease, 10 exhibited partial response (PR) or better; among 26 subjects responding to prior therapy, 9 improved their response category and 4 converted to minimal residual disease (MRD)-negative complete response/stringent complete response. Early maintenance therapy was safe, feasible, and coincided in some patients with CAR T-cell reexpansion and late-onset, durable clinical response. Outcomes with CART-BCMA + huCART19 were similar to CART-BCMA alone. Collectively, our results demonstrate favorable safety, pharmacokinetics, and antimyeloma activity of dual-target CAR T-cell therapy in early lines of MM treatment. SIGNIFICANCE: CAR T cells in early lines of MM therapy could be safer and more effective than in the advanced setting, where prior studies have focused. We evaluated the safety, pharmacokinetics, and efficacy of CAR T cells in patients with low disease burden, responding to current therapy, combined with standard maintenance therapy. This article is highlighted in the In This Issue feature, p. 101.


Subject(s)
Multiple Myeloma , Receptors, Chimeric Antigen , Humans , Multiple Myeloma/therapy , Receptors, Chimeric Antigen/therapeutic use , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Lenalidomide/therapeutic use , Antigens, CD19/therapeutic use , T-Lymphocytes
8.
Mol Ther Oncolytics ; 27: 288-304, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36458202

ABSTRACT

Antigen heterogeneity that results in tumor antigenic escape is one of the major obstacles to successful chimeric antigen receptor (CAR) T cell therapies in solid tumors including glioblastoma multiforme (GBM). To address this issue and improve the efficacy of CAR T cell therapy for GBM, we developed an approach that combines CAR T cells with inhibitor of apoptosis protein (IAP) antagonists, a new class of small molecules that mediate the degradation of IAPs, to treat GBM. Here, we demonstrated that the IAP antagonist birinapant could sensitize GBM cell lines and patient-derived primary GBM organoids to apoptosis induced by CAR T cell-derived cytokines, such as tumor necrosis factor. Therefore, birinapant could enhance CAR T cell-mediated bystander death of antigen-negative GBM cells, thus preventing tumor antigenic escape in antigen-heterogeneous tumor models in vitro and in vivo. In addition, birinapant could promote the activation of NF-κB signaling pathways in antigen-stimulated CAR T cells, and with a birinapant-resistant tumor model we showed that birinapant had no deleterious effect on CAR T cell functions in vitro and in vivo. Overall, we demonstrated the potential of combining the IAP antagonist birinapant with CAR T cells as a novel and feasible approach to overcoming tumor antigen heterogeneity and enhancing CAR T cell therapy for GBM.

9.
STAR Protoc ; 3(4): 101784, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36386869

ABSTRACT

It is technically challenging to generate large doses of regulatory T cells (Tregs) engineered to express a chimeric antigen receptor (CAR) in non-human primates (NHP). Here, we have optimized the manufacturing of CAR Tregs by stringent sorting of Tregs, stimulation by artificial antigen-presenting cells, transduction by simian tropic lentiviral vectors, and antigen-specific expansion. The result of this method is highly suppressive CAR Tregs for use in a pre-clinical, large animal model of transplant tolerance. For complete details on the use and execution of this protocol, please refer to Ellis et al. (2022).


Subject(s)
Receptors, Chimeric Antigen , Animals , Receptors, Chimeric Antigen/genetics , Antigen-Presenting Cells , T-Lymphocytes, Regulatory , Primates , Transplantation Tolerance
10.
Bio Protoc ; 12(15)2022 Aug 05.
Article in English | MEDLINE | ID: mdl-36389275

ABSTRACT

Genome-editing technologies, especially CRISPR (clustered regularly interspaced short palindrome repeats)/Cas9 (CRISPR-associated protein 9), endows researchers the ability to make efficient, simple , and precise genomic DNA changes in many eukaryotic cell types. CRISPR/Cas9-mediated efficient gene knockout holds huge potential to improve the efficacy and safety of chimeric antigen receptor (CAR) T cell-based immunotherapies. Here, we describe an optimized approach for a complete loss of endogenous T cell receptor (TCR) protein expression, by CRISPR/Cas9-mediated TCR α constant (TRAC) and TCR ß constant (TRBC) gene knockout, followed by subsequent CD3 negative selection in engineered human ortho CAR19 T cells. We believe this method can be expanded beyond CAR T cell application, and target other cell surface receptors. Graphical abstract: Schematic overview of the two-step process of endogenous TCR depletion in engineered human ortho CAR19 T cells using (1) CRISPR/Cas9-mediated gene knockout followed by (2) CD3 negative selection.

12.
Blood Cancer Discov ; 3(6): 490-501, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36026513

ABSTRACT

Chimeric antigen-receptor (CAR) T cells lead to high response rates in myeloma, but most patients experience recurrent disease. We combined several high-dimensional approaches to study tumor/immune cells in the tumor microenvironment (TME) of myeloma patients pre- and post-B-cell maturation antigen (BCMA)-specific CAR T therapy. Lower diversity of pretherapy T-cell receptor (TCR) repertoire, presence of hyperexpanded clones with exhaustion phenotype, and BAFF+PD-L1+ myeloid cells in the marrow correlated with shorter progression-free survival (PFS) following CAR T therapy. In contrast, longer PFS was associated with an increased proportion of CLEC9A+ dendritic cells (DC), CD27+TCF1+ T cells with diverse T-cell receptors, and emergence of T cells expressing marrow-residence genes. Residual tumor cells at initial response express stemlike genes, and tumor recurrence was associated with the emergence of new dominant clones. These data illustrate a dynamic interplay between endogenous T, CAR T, myeloid/DC, and tumor compartments that affects the durability of response following CAR T therapy in myeloma. SIGNIFICANCE: There is an unmet need to identify determinants of durable responses following BCMA CAR T therapy of myeloma. High-dimensional analysis of the TME was performed to identify features of immune and tumor cells that correlate with survival and suggest several strategies to improve outcomes following CAR T therapy. See related commentary by Graham and Maus, p. 478. This article is highlighted in the In This Issue feature, p. 476.


Subject(s)
Bone Marrow Neoplasms , Multiple Myeloma , Receptors, Chimeric Antigen , Humans , B-Cell Maturation Antigen/genetics , Receptors, Chimeric Antigen/genetics , Multiple Myeloma/immunology , Bone Marrow/pathology , Neoplasm Recurrence, Local , T-Lymphocytes/immunology , Tumor Microenvironment
13.
Cell Rep Med ; 3(5): 100614, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35551746

ABSTRACT

Adoptive transfer of chimeric antigen receptor regulatory T cells (CAR Tregs) is a promising way to prevent allograft loss without the morbidity associated with current therapies. Non-human primates (NHPs) are a clinically relevant model to develop transplant regimens, but manufacturing and engraftment of NHP CAR Tregs have not been demonstrated yet. Here, we describe a culture system that massively expands CAR Tregs specific for the Bw6 alloantigen. In vitro, these Tregs suppress in an antigen-specific manner without pro-inflammatory cytokine secretion or cytotoxicity. In vivo, Bw6-specific CAR Tregs preferentially traffic to and persist in bone marrow for at least 1 month. Following transplant of allogeneic Bw6+ islets and autologous CAR Tregs into the bone marrow of diabetic recipients, CAR Tregs traffic to the site of islet transplantation and maintain a phenotype of suppressive Tregs. Our results establish a framework for the optimization of CAR Treg therapy in NHP disease models.


Subject(s)
Isoantigens , Receptors, Chimeric Antigen , Adoptive Transfer , Animals , Macaca , Receptors, Chimeric Antigen/genetics , T-Lymphocytes, Regulatory
14.
Nat Cancer ; 3(7): 808-820, 2022 07.
Article in English | MEDLINE | ID: mdl-35637402

ABSTRACT

Evasion of antitumor immunity and resistance to therapies in solid tumors are aided by an immunosuppressive tumor microenvironment (TME). We found that TME factors, such as regulatory T cells and adenosine, downregulated type I interferon receptor IFNAR1 on CD8+ cytotoxic T lymphocytes (CTLs). These events relied upon poly-ADP ribose polymerase-11 (PARP11), which was induced in intratumoral CTLs and acted as a key regulator of the immunosuppressive TME. Ablation of PARP11 prevented loss of IFNAR1, increased CTL tumoricidal activity and inhibited tumor growth in an IFNAR1-dependent manner. Accordingly, genetic or pharmacologic inactivation of PARP11 augmented the therapeutic benefits of chimeric antigen receptor T cells. Chimeric antigen receptor CTLs engineered to inactivate PARP11 demonstrated a superior efficacy against solid tumors. These findings highlight the role of PARP11 in the immunosuppressive TME and provide a proof of principle for targeting this pathway to optimize immune therapies.


Subject(s)
Neoplasms , Poly(ADP-ribose) Polymerases/metabolism , Receptors, Chimeric Antigen , Humans , Immunosuppression Therapy , Immunotherapy, Adoptive , Neoplasms/drug therapy , Receptors, Chimeric Antigen/genetics , Tumor Microenvironment
15.
Nat Biomed Eng ; 6(2): 118-128, 2022 02.
Article in English | MEDLINE | ID: mdl-35190680

ABSTRACT

Chimaeric antigen receptor (CAR) T cells can generate durable clinical responses in B-cell haematologic malignancies. The manufacturing of these T cells typically involves their activation, followed by viral transduction and expansion ex vivo for at least 6 days. However, the activation and expansion of CAR T cells leads to their progressive differentiation and the associated loss of anti-leukaemic activity. Here we show that functional CAR T cells can be generated within 24 hours from T cells derived from peripheral blood without the need for T-cell activation or ex vivo expansion, and that the efficiency of viral transduction in this process is substantially influenced by the formulation of the medium and the surface area-to-volume ratio of the culture vessel. In mouse xenograft models of human leukaemias, the rapidly generated non-activated CAR T cells exhibited higher anti-leukaemic in vivo activity per cell than the corresponding activated CAR T cells produced using the standard protocol. The rapid manufacturing of CAR T cells may reduce production costs and broaden their applicability.


Subject(s)
Leukemia , Receptors, Chimeric Antigen , Animals , Humans , Immunotherapy, Adoptive/methods , Mice , T-Lymphocytes
16.
Sci Transl Med ; 13(625): eabg6986, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34936380

ABSTRACT

Interleukin-2 (IL-2) is a central T cell cytokine that promotes T cell proliferation and effector function; however, toxicity due to its pluripotency limits its application to enhance CAR T cell immunotherapy. Previously, mouse IL-2 and its cognate receptor were engineered to create an orthogonal (ortho) cytokine-cytokine receptor pair capable of delivering an IL-2 signal without toxicity. Here, we engineered a human orthogonal IL-2 (ortho-hIL-2) and human orthogonal IL-2Rß (ortho-hIL-2Rß) pair, containing human-specific mutations. Ortho-hIL-2 is selective toward ortho-hIL-2Rß­expressing cells with no appreciable signaling on wild-type T cells. Ortho-hIL-2 induces IL-2 receptor signaling and supports proliferation of both an IL-2­dependent cell line and primary T cells transduced to express the ortho-hIL-2Rß. Using CD19-specific chimeric antigen receptor (CAR) T cells, we show that ortho-hIL-2 induces a dose-dependent increase in ortho-hIL-2Rß+ CAR T cell expansion in vivo by as much as 1000-fold at 2 weeks after adoptive transfer into immunodeficient mice bearing CD19+ Nalm6 leukemia xenografts. Ortho-hIL-2 can rescue the antileukemic effect of an otherwise suboptimal CAR T cell dose. In addition, ortho-hIL-2 administration initiated at the time of leukemic relapse after CAR T cell therapy can rescue an otherwise failed antileukemic response. These data highlight the potential of combining an orthogonal cytokine approach with T cell­based immunotherapies to augment the antitumor efficacy of engineered T cells.


Subject(s)
Interleukin-2 , Leukemia , Animals , Antigens, CD19/metabolism , Cell Proliferation , Disease Models, Animal , Humans , Immunotherapy, Adoptive , Interleukin-2/metabolism , Leukemia/metabolism , Mice , T-Lymphocytes , Xenograft Model Antitumor Assays
17.
Cells ; 10(9)2021 09 06.
Article in English | MEDLINE | ID: mdl-34571983

ABSTRACT

The metabolic milieu of solid tumors provides a barrier to chimeric antigen receptor (CAR) T-cell therapies. Excessive lactate or hypoxia suppresses T-cell growth, through mechanisms including NADH buildup and the depletion of oxidized metabolites. NADH is converted into NAD+ by the enzyme Lactobacillus brevis NADH Oxidase (LbNOX), which mimics the oxidative function of the electron transport chain without generating ATP. Here we determine if LbNOX promotes human CAR T-cell metabolic activity and antitumor efficacy. CAR T-cells expressing LbNOX have enhanced oxygen as well as lactate consumption and increased pyruvate production. LbNOX renders CAR T-cells resilient to lactate dehydrogenase inhibition. But in vivo in a model of mesothelioma, CAR T-cell's expressing LbNOX showed no increased antitumor efficacy over control CAR T-cells. We hypothesize that T cells in hostile environments face dual metabolic stressors of excessive NADH and insufficient ATP production. Accordingly, futile T-cell NADH oxidation by LbNOX is insufficient to promote tumor clearance.


Subject(s)
Adenosine Triphosphate/metabolism , Multienzyme Complexes/metabolism , NADH, NADPH Oxidoreductases/metabolism , Receptors, Antigen, T-Cell/metabolism , Adult , Animals , Female , Humans , Levilactobacillus brevis/metabolism , Male , Mice , Mice, Inbred NOD , Mice, SCID , NAD/metabolism , Oxidation-Reduction , T-Lymphocytes/metabolism
18.
Front Oncol ; 11: 664236, 2021.
Article in English | MEDLINE | ID: mdl-34568006

ABSTRACT

Tumor heterogeneity is a key reason for therapeutic failure and tumor recurrence in glioblastoma (GBM). Our chimeric antigen receptor (CAR) T cell (2173 CAR T cells) clinical trial (NCT02209376) against epidermal growth factor receptor (EGFR) variant III (EGFRvIII) demonstrated successful trafficking of T cells across the blood-brain barrier into GBM active tumor sites. However, CAR T cell infiltration was associated only with a selective loss of EGFRvIII+ tumor, demonstrating little to no effect on EGFRvIII- tumor cells. Post-CAR T-treated tumor specimens showed continued presence of EGFR amplification and oncogenic EGFR extracellular domain (ECD) missense mutations, despite loss of EGFRvIII. To address tumor escape, we generated an EGFR-specific CAR by fusing monoclonal antibody (mAb) 806 to a 4-1BB co-stimulatory domain. The resulting construct was compared to 2173 CAR T cells in GBM, using in vitro and in vivo models. 806 CAR T cells specifically lysed tumor cells and secreted cytokines in response to amplified EGFR, EGFRvIII, and EGFR-ECD mutations in U87MG cells, GBM neurosphere-derived cell lines, and patient-derived GBM organoids. 806 CAR T cells did not lyse fetal brain astrocytes or primary keratinocytes to a significant degree. They also exhibited superior antitumor activity in vivo when compared to 2173 CAR T cells. The broad specificity of 806 CAR T cells to EGFR alterations gives us the potential to target multiple clones within a tumor and reduce opportunities for tumor escape via antigen loss.

19.
Nat Cancer ; 2(8): 780-793, 2021 08.
Article in English | MEDLINE | ID: mdl-34485921

ABSTRACT

Chimeric antigen receptor (CAR) T-cell therapies have evolved from a research tool to a paradigm-shifting therapy with impressive responses in B cell malignancies. This review summarizes the current state of the CAR T-cell field, focusing on CD19- and B cell maturation antigen-directed CAR T-cells, the most developed of the CAR T-cell therapies. We discuss the many challenges to CAR-T therapeutic success and innovations in CAR design and T-cell engineering aimed at extending this therapeutic platform beyond hematologic malignancies.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Antigens, CD19 , Humans , Immunotherapy, Adoptive , Neoplasms/therapy , T-Lymphocytes
20.
Clin Cancer Res ; 27(23): 6580-6590, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34526365

ABSTRACT

PURPOSE: B-cell maturation antigen (BCMA)-targeted chimeric antigen receptor (CAR) T cells (CART-BCMA) are a promising treatment for relapsed/refractory multiple myeloma (r/rMM). We evaluated the safety and feasibility of bridging radiation (RT) in subjects treated on a phase I trial of CART-BCMA. EXPERIMENTAL DESIGN: Twenty-five r/rMM subjects were treated in three cohorts with two doses of CART-BCMA cells ± cyclophosphamide. We retrospectively analyzed toxicity, response, and CART manufacturing data based on RT receipt. RESULTS: Thirteen subjects received no RT <1 year before CART infusion (Group A). Eight subjects received RT <1 year before CART infusion (Group B) with median time from RT to apheresis of 114 days (range 40-301). Four subjects received bridging-RT (Group C) with a median dose of 22 Gy and time from RT to infusion of 25 days (range 18-35). Group C had qualitatively lower rates of grade 4 (G4) hematologic toxicities (25%) versus A (61.5%) and B (62.5%). G3-4 neurotoxicity occurred in 7.7%, 25%, and 25% in Group A, B, and C, respectively. G3-4 cytokine release syndrome was observed in 38.5%, 25%, and 25% in Group A, B, and C, respectively. Partial response or better was observed in 54%, 38%, and 50% of Group A, B, and C, respectively. RT administered <1 year (P = 0.002) and <100 days (P = 0.069) before apheresis was associated with lower in vitro proliferation during manufacturing; however, in vivo CART-BCMA expansion appeared similar across groups. CONCLUSIONS: Bridging-RT appeared safe and feasible with CART-BCMA therapy in our r/rMM patients, though larger future studies are needed to draw definitive conclusions.


Subject(s)
Immunotherapy, Adoptive , Multiple Myeloma , B-Cell Maturation Antigen , Humans , Immunotherapy, Adoptive/adverse effects , Multiple Myeloma/drug therapy , Receptors, Chimeric Antigen , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...